
February 17, 2023

Security Audit for

LevelX

https://defiyield.app/


Content

Content 2

1. About DEFIYIELD 3

2. Audit Scope 4
2.1 Project 4

2.1 Contracts 4

4. Methodology 7
4.1 Auditing approach 7

4.2 Issue Classification by Severity 11

5. Disclaimer 11

6. Findings 12
6.1 The LevelXToken.sol Contract 12

6.2 The LevelXWrapperToken.sol Contract 15

6.3 The LevelXSeed.sol Contract 16

6. Conclusion 18



1. About DEFIYIELD

DeFiYield is one of the leading smart contract auditing providers focused on
checking security of DeFi projects and the world's only crypto asset
management dashboard featuring user protection against interactions with
risky smart contracts.

Our first audits were conducted back in July 2020, shortly after the yield
farming industry boomed, bringing impressive return opportunities for users.
At the same time, scams happened every day, and users were not protected
against them in any way. No one performed yield-farming-focused audits at
the time and a lot of projects were launching without even doing proper
internal audits. This is why DeFiYield took the lead and has been developing
and pushing security standards in the community since then.



2. Audit Scope

2.1 Project

Project Name LevelX

Blockchain -

Language Solidity

About LevelX is an ERC20-based protocol that includes a rebase ERC20
token contract, reflection, and leveling functionality. Users can
earn reward tokens through this system, and there is an additional
ERC20 token-based staking contract available.

2.1 Contracts

4 (four) smart contracts from the GitHub commit:
0c4dbcf14088157039cac0be0e9458c30decd256 were analyzed for the
presence of code vulnerabilities:

Solidity

● LevelXToken.sol
● LevelXWrapperToken.sol
● LevelXSeed.sol
● LevelXExchange.sol

https://github.com/GrowthDeFi-Organization/levelx/commit/0c4dbcf14088157039cac0be0e9458c30decd256


Total Issues Found: 6

Related Smart
Contract

ID Issue name Category Severity Status

LevelXToken.sol
209 Sell/Buy fee DeFi-Specific ◉ Critical Acknowledged

198-
d

Overprivileged role DeFi-Specific ◉ High Acknowledged

179 Costly operations in
a loop

Solidity Coding Best
Practices

◉ Medium Acknowledged

- Code styling Solidity Coding Best
Practices

◉ Info Acknowledged



LevelXWrapperToken
.sol

- Code styling Solidity Coding Best
Practices

◉ Info Acknowledged

LevelXSeed.sol - Code styling Solidity Coding Best
Practices

◉ Info Acknowledged

LevelXExchange.sol - - -

✱ Acknowledged means that the issue was addressed to the project's team, but they don't define it as a problem:
a) the code was designed in the way intentionally;
b) the code doesn't cause any issues for security and functioning of the smart contract.



4. Methodology

4.1 Auditing approach

Both manual and automated audit techniques are applied to all audited
contracts.

For automated analysis, we use DeFiYield’ scanner. The Scanner was designed
by DeFiYield for fast, automated checks of common smart contract
weaknesses. Moreover, it detects DeFi-specific smart contract vulnerabilities
and malicious functions that are the most frequent reasons for rug pulls and
hacker attacks.

All issues found by the scanner get manually reviewed and validated with
line-by-line code analysis.

Issues covered:

● Unverified contracts;
● Unlimited minting to a malicious destination;
● Dangerous token migration;
● Pausing token transfers anytime for unlimited period;
● Pausing token transfer for limited period (defined in the contract);
● Pausing funds withdrawals (centralized pausing for any funds

withdrawals);
● Pausing funds withdrawals with emergency withdrawal available;
● Proxy patterns;
● Funds lock with centralized control;
● State variables shadowing;
● Functions allowing anyone to destruct the contract;
● Uninitialized state variables;

https://defiyield.app/scanner


● Uninitialized storage variables;
● Unprotected upgradeable contract;
● Functions that send Ether to arbitrary destination;
● Controlled delegatecall destination;
● Reentrancy vulnerabilities (theft of ethers);
● Unchecked tokens transfer;
● Weak PRNG;
● Detect dangerous enum conversion;
● Incorrect ERC20 interfaces;
● Incorrect ERC721 interfaces;
● Dangerous strict equalities;
● Contracts that lock ether;
● State variables shadowing from abstract contracts;
● Unused write;
● Misuse of Boolean constant;
● Constant functions using assembly code;
● Constant functions changing the state;
● Imprecise arithmetic operations order;
● Reentrancy vulnerabilities (no theft of ethers);
● Reused base constructor;
● Dangerous usage of tx.origin;
● Unchecked low-level calls;
● Unchecked send;
● Uninitialized local variables;
● Unused return values;
● Modifiers that can return the default value;
● Local variables used prior their declaration;
● Constructor called not implemented;
● Missing Events Access Control;
● Missing Events Arithmetic;
● Dangerous unary expressions;



● Missing Zero Address Validation;
● Benign reentrancy vulnerabilities;
● Reentrancy vulnerabilities leading to out-of-order Events;
● Dangerous usage of block.timestamp;
● Assert state change;
● Comparison to boolean constant;
● Un-indexed ERC20 event parameters;
● Function initializing state variables;
● Missing inheritance;
● Conformity to Solidity naming conventions;
● Incorrect Solidity version;
● Unimplemented functions;
● Unused state variables;
● Costly operations in a loop;
● Functions that are not used;
● Reentrancy vulnerabilities through send and transfer;
● Variable names are too similar;
● Conformance to numeric notation best practices;
● State variables that could be declared constant;
● Public function that could be declared external;
● Contract are different from filenames
● Funds lock with centralized control;
● Suspicious functions;
● Insufficient timelock for important contract changes;
● Overprivileged role:

a. The privileged EOA can call a function that allows to withdraw all
staked in the contract funds to a needed address;

b. The privileged EOA can change address of token reward
distribution;

c. The privileged EOA can change the location of staked user funds.
● Unrestricted fee setting;



a. withdrawal fee can be set up to 100%;
b. user reward fee can be decreased;
c. Team reward increased without any limitations in centralized

way;
d. Other protocol fees with unexpected security consequences).

● Using a singular exchange as a price source;
● Insufficient Validation;
● Uncollateralized share token minting;
● Unprotected function;
● Custom token standard;
● Logic bug;
● Missing requirement;
● Blacklisting;
● ERC20 transfer limit;
● Token drain vulnerability through ERC20 approval;
● Custom standard ERC20 functions;
● Blocking loop;
● Cooldown time on trading;
● Centralized token balance modification;
● Suspicious approval in Masterchef;
● Suspicious approval in token pair;
● Approval Objects Restriction;
● Payable function using delegatecall inside a loop;
● msg.value inside a loop;
● Arbitrary ERC20 send with permit;
● Privileged NFT transferFrom without approval;



4.2 Issue Classification by Severity

◉ Critical Issues that can directly cause a loss of underlying funds with high
probability. These issues must be removed ASAP.

◉ High There is a possibility of negative impacts on funds managed by the
smart contract when certain conditions come into action.

◉Medium Issues that affect contract functionality without causing financial losses,
must be addressed by the developers.

◉ Low The issues must be addressed to follow the best SC coding practice.

◉ Info The issues refer to the best SC coding practice and don’t cause any
problems with using SCs. Their handling depends on the decision of the
dev team.

5. Disclaimer
Please note that this audit is not financial advice. Conduct your own research
before investing.

Review a few audits from multiple different audit providers as one audit
doesn’t guarantee all issues are detected and that there will be no security
issues with the project analyzed in the future.

Moreover, it’s important to consider that some of the information given is
time-sensitive: the project can update its smart contract system,
implementing new smart contracts and documentation. Therefore, always
track changes influencing investing terms.



6. Findings

6.1 The LevelXToken.sol Contract

Address -

Contract overview ERC20 Rebase, Reflection token.

Owner -

Privileged functions Owner Role:
- updateBuyFee
- updateSellFee
- updateFeeLiquidityCut
- updateLiquidityRecipient
- updateMinimumFeeBalanceToSwap
- updateMinimumRewardBalanceToSwap
- addRewardToken
- updateRewardBankroll
- updateRewardPath
- updateBurnAmountToBumpLevel
- updateMinimumBalanceForRewards
- updateBaselineTotalActiveSupply
- updateNextRebaseRatePerEpoch
- updateExpansionToRewardFactor
- updateAutoClaim
- updateExcludeFromTransferPenalty
- updateExcludeFromTradeFee
- updateExcludeFromRewardsDefaultBehavior
- claimOnBehalfOf



Issues found

Sell/Buy fee

Severity ◉ Critical

SCW ID 209

Description The contract owner can set the buy and the sell fees up to 100%.
All trading activity via LVLX/BNB pair could be blocked in a
centralized way.

Location - updateBuyFee(uint256 _buyFee)
- updateSellFee(uint256 _sellFee)

Recommendations We recommend using limitations for the fee setters. From our
perspective, it shouldn’t be higher than 20%. But if this is the
protocol requirement, it should be well documented. Also, we
recommend using a timelock contract as an owner role for this
type of setter.

Status Acknowledged: “The owner of both the contract and its
upgrade beacon (it has been deployed as an upgradable
contract) are a multisig requiring 3 out of 4 signatures, and
there are 2 people of each team (GrowthDeFi / Emp.money) in
the signing roster. Here is the multisig address
0xdaa425fF33C00aD8AeaF689776CF8556Bad263b8 and the
upgradable beacon address
0xC121B103690927a41C7EcF744Cc41bEa7f6853E3”

Overprivileged role

Severity ◉ High



SCW ID 198-d

Description A privileged address can change critical protocol parameters.
We noticed, that some setters don’t include any input
requirements. Thus, if an uncontrolled value is set, it could lead
to unexpected behavior of the protocol.

Location - updateMinimumFeeBalanceToSwap(uint256
_minimumFeeBalanceToSwap)

- updateMinimumRewardBalanceToSwap(uint256
_minimumRewardBalanceToSwap)

- updateBurnAmountToBumpLevel(uint256
_burnAmountToBumpLevel)

Recommendations All critical protocol setters should include input requirements
and be well documented. Also, we recommend using a timelock
contract as an owner role for this type of setter.

Status Acknowledged: “The owner of both the contract and its
upgrade beacon (it has been deployed as an upgradable
contract) are a multisig requiring 3 out of 4 signatures, and
there are 2 people of each team (GrowthDeFi / Emp.money) in
the signing roster. Here is the multisig address
0xdaa425fF33C00aD8AeaF689776CF8556Bad263b8 and the
upgradable beacon address
0xC121B103690927a41C7EcF744Cc41bEa7f6853E3”

Costly operations in a loop

Severity ◉Medium

SCW ID 179

Description Costly loop operations can waste gas and lead to out-of-gas
errors.

Location - function updateMinimumBalanceForRewards(uint256



_minimumBalanceForRewards, bool _forceUpdateAll)

Recommendations Rewrite the function with a batch functionality.

Status Acknowledged: “That functionality is there only for convenience
and is not critical. We can use a script to perform the state
update in batches, outside the contract, if necessary.”

Code duplication

Severity ◉ info

SCW ID -

Description The code could be optimized

Location - _updateEpoch()

Recommendations We have noticed code duplication in lines “597-605” and
“623-631”. This functionality could be implemented in a
separate function to avoid duplication.

Status Acknowledged

Code styling

Severity ◉ info

SCW ID -

Description Lack of NatSpec comments and wrong order of functions.

Location -

Recommendations Follow the Solidity style guide recommendations.
https://docs.soliditylang.org/en/v0.8.17/style-guide.html



Status Acknowledged

6.2 The LevelXWrapperToken.sol Contract

Address -

Contract overview ERC20 standard token-based staking contract. Allows
depositing in the native LevelX token and minting shares from
the target contract.

Owner -

Privileged functions No privileged role.

Issues found

Code styling

Severity ◉ info

SCW ID -

Description Lack of NatSpec comments and wrong order of functions.

Location -

Recommendations Follow the Solidity style guide recommendations.
https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Status Acknowledged



6.3 The LevelXSeed.sol Contract

Address -

Contract overview The token sale contract.

Owner -

Privileged functions No privileged role.

Issues found

Code styling

Severity ◉ info

SCW ID -

Description Lack of NatSpec comments and wrong order of functions.

Location -

Recommendations Follow the Solidity style guide recommendations.
https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Status Acknowledged



6. Conclusion
We conducted a security audit on the LevelX protocol and found no

security issues within our scope, apart from some centralization issues. We
have shared some suggestions for improvement with the LevelX team, and
they have already implemented the most critical ones by implementing the
multi-sig wallet contract as an owner of the LevelX Token contract and
UpgradeableBeacon. This has reduced the centralization risks, but we
recommend users and the community monitor the activity of the multi-sig
wallet and its signers.

In case the contract is upgradable, some medium and info severity
issues could be addressed in the future. We also recommend making the
smart contract documentation public on the GitHub repository, since the
NatSpec comments are missing. To facilitate this, information about the
smart contract functionality should be included in the readme.md file.


